- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Wall, Casey_J (2)
-
Eidhammer, Trude (1)
-
Elsaesser, Gregory (1)
-
Gettelman, Andrew (1)
-
Lutsko, Nicholas_J (1)
-
McCoy, Daniel_T (1)
-
McCoy, Isabel_L (1)
-
Song, Ci (1)
-
Vishny, David_N (1)
-
Watson‐Parris, Duncan (1)
-
Wood, Robert (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The mechanisms by which clouds impact the variability of the mid‐latitude atmosphere are poorly understood. We use an idealized, dry atmospheric model to investigate the relationship between Atmospheric Cloud Radiative Effects (ACRE) and annular mode persistence. We force the model with time‐varying diabatic heating that mimics the observed ACRE response to the Southern Annular Mode (SAM). Realistic ACRE forcing reduces annular mode persistence by 5 days (−16%), which we attribute to a weakening of low‐frequency eddy forcing via modified low‐level temperature gradients, though this effect is partly compensated by reduced frictional damping due to zonal wind anomalies becoming more top‐heavy. The persistence changes are nonlinear with respect to the amplitude of ACRE forcing, reflecting nonlinearities in the response of the eddy forcing. These results highlight the ACRE's impact on low‐frequency eddy forcing as the dominant cause of changes in annular mode persistence.more » « less
-
Song, Ci; McCoy, Daniel_T; Eidhammer, Trude; Gettelman, Andrew; McCoy, Isabel_L; Watson‐Parris, Duncan; Wall, Casey_J; Elsaesser, Gregory; Wood, Robert (, Geophysical Research Letters)Abstract Aerosol‐cloud interactions (ACI) in warm clouds are the primary source of uncertainty in effective radiative forcing (ERF) during the historical period and, by extension, inferred climate sensitivity. The ERF due to ACI (ERFaci) is composed of the radiative forcing due to changes in cloud microphysics and cloud adjustments to microphysics. Here, we examine the processes that drive ERFaci using a perturbed parameter ensemble (PPE) hosted in CAM6. Observational constraints on the PPE result in substantial constraints in the response of cloud microphysics and macrophysics to anthropogenic aerosol, but only minimal constraint on ERFaci. Examination of cloud and radiation processes in the PPE reveal buffering of ERFaci by the interaction of precipitation efficiency and radiative susceptibility.more » « less
An official website of the United States government
